💧 Posted on 

Kafka 系列(一):基本概念

本文主要介绍一下kafka中的基本概念,主要包括:Producer、Consumer、topic、partition、offset、broker、ISR、AR、HW、LEO等。

Consumer & Producer

一个典型的 Kafka 体系架构包括若干 Producer、若干 Broker、若干Consumer,以及一个ZooKeeper集群。其中ZooKeeper是Kafka用来负责集群元数据的管理、控制器的选举等操作的。Producer将消息发送到Broker,Broker负责将收到的消息存储到磁盘中,而Consumer负责从Broker订阅并消费消息。

  • Producer:生产者,也就是发送消息的一方。生产者负责创建消息,然后将其投递到Kafka中。
  • Consumer:消费者,也就是接收消息的一方。消费者连接到Kafka上并接收消息,进而进行相应的业务逻辑处理。
  • Broker:服务代理节点。对于Kafka而言,Broker可以简单地看作一个独立的Kafka服务节点或Kafka服务实例。大多数情况下也可以将Broker看作一台Kafka服务器,前提是这台服务器上只部署了一个Kafka实例。一个或多个Broker组成了一个Kafka集群。

消费者(Consumer)负责订阅Kafka中的主题(Topic),并且从订阅的主题上拉取消息。与其他一些消息中间件不同的是:在Kafka的消费理念中还有一层消费组(Consumer Group)的概念,每个消费者都有一个对应的消费组。当消息发布到主题后,只会被投递给订阅它的每个消费组中的一个消费者。

例如,某个主题中共有4个分区(Partition):P0、P1、P2、P3。

有两个消费组A和B都订阅了这个主题,消费组A中有4个消费者(C0、C1、C2和C3),消费组B中有2个消费者(C4和C5)。

按照Kafka默认的规则,最后的分配结果是消费组A中的每一个消费者分配到1个分区,消费组B中的每一个消费者分配到2个分区,两个消费组之间互不影响。每个消费者只能消费所分配到的分区中的消息。

换言之,每一个分区只能被一个消费组中的一个消费者所消费。

消费者与消费组这种模型可以让整体的消费能力具备横向伸缩性,我们可以增加(或减少)消费者的个数来提高(或降低)整体的消费能力。

对于分区数固定的情况,一味地增加消费者并不会让消费能力一直得到提升,如果消费者过多,出现了消费者的个数大于分区个数的情况,就会有消费者分配不到任何分区。

以上分配逻辑都是基于默认的分区分配策略进行分析的,可以通过消费者客户端参数 partition.assignment.strategy 来设置消费者与订阅主题之间的分区分配策略。

对于消息中间件而言,一般有两种消息投递模式:

  • 点对点(P2P,Point-to-Point)模式
  • 发布/订阅(Pub/Sub)模式

点对点模式是基于队列的,消息生产者发送消息到队列,消息消费者从队列中接收消息。

发布订阅模式定义了如何向一个内容节点发布和订阅消息,这个内容节点称为主题(Topic),主题可以认为是消息传递的中介,消息发布者将消息发布到某个主题,而消息订阅者从主题中订阅消息。

主题使得消息的订阅者和发布者互相保持独立,不需要进行接触即可保证消息的传递,发布/订阅模式在消息的一对多广播时采用。Kafka 同时支持两种消息投递模式,而这正是得益于消费者与消费组模型的契合:

  • 如果所有的消费者都隶属于同一个消费组,那么所有的消息都会被均衡地投递给每一个消费者,即每条消息只会被一个消费者处理,这就相当于点对点模式的应用。
  • 如果所有的消费者都隶属于不同的消费组,那么所有的消息都会被广播给所有的消费者,即每条消息会被所有的消费者处理,这就相当于发布/订阅模式的应用。

Topic & Partition

在Kafka中还有两个特别重要的概念

  • 主题(Topic)
  • 分区(Partition)

Kafka中的消息以主题为单位进行归类,生产者负责将消息发送到特定的主题,而消费者负责订阅主题并进行消费。

主题是一个逻辑上的概念,它还可以细分为多个分区,一个分区只属于单个主题,很多时候也会把分区称为主题分区(Topic-Partition)。

同一主题下的不同分区包含的消息是不同的,分区在存储层面可以看作一个可追加的日志(Log)文件,消息在被追加到分区日志文件的时候都会分配一个特定的偏移量(offset)。offset是消息在分区中的唯一标识,Kafka通过它来保证消息在分区内的顺序性,不过offset并不跨越分区,也就是说,Kafka保证的是分区有序而不是主题有序。

Kafka中的分区可以分布在不同的服务器(broker)上,也就是说,一个主题可以横跨多个broker,以此来提供比单个broker更强大的性能。

每一条消息被发送到broker之前,会根据分区规则选择存储到哪个具体的分区。如果分区规则设定得合理,所有的消息都可以均匀地分配到不同的分区中。

如果一个主题只对应一个文件,那么这个文件所在的机器 I/O 将会成为这个主题的性能瓶颈,而分区解决了这个问题。在创建主题的时候可以通过指定的参数来设置分区的个数,当然也可以在主题创建完成之后去修改分区的数量,通过增加分区的数量可以实现水平扩展。

Kafka 为分区引入了多副本(Replica)机制,通过增加副本数量可以提升容灾能力。同一分区的不同副本中保存的是相同的消息(在同一时刻,副本之间并非完全一样),副本之间是“一主多从”的关系,其中leader副本负责处理读写请求,follower副本只负责与leader副本的消息同步。

副本处于不同的broker中,当leader副本出现故障时,从follower副本中重新选举新的leader副本对外提供服务。Kafka通过多副本机制实现了故障的自动转移,当Kafka集群中某个broker失效时仍然能保证服务可用。

Kafka 消费端也具备一定的容灾能力。Consumer 使用拉(Pull)模式从服务端拉取消息,并且保存消费的具体位置,当消费者宕机后恢复上线时可以根据之前保存的消费位置重新拉取需要的消息进行消费,这样就不会造成消息丢失。

AR & ISR

分区中的所有副本统称为AR(Assigned Replicas)。所有与leader副本保持一定程度同步的副本(包括leader副本在内)组成ISR(In-Sync Replicas),ISR集合是AR集合中的一个子集。

消息会先发送到leader副本,然后follower副本才能从leader副本中拉取消息进行同步,同步期间内follower副本相对于leader副本而言会有一定程度的滞后。前面所说的“一定程度的同步”是指可忍受的滞后范围,这个范围可以通过参数进行配置。

与leader副本同步滞后过多的副本(不包括leader副本)组成OSR(Out-of-Sync Replicas),由此可见,AR=ISR+OSR。在正常情况下,所有的 follower 副本都应该与 leader 副本保持一定程度的同步,即AR=ISR,OSR集合为空。

leader副本负责维护和跟踪ISR集合中所有follower副本的滞后状态,当follower副本落后太多或失效时,leader副本会把它从ISR集合中剔除。如果OSR集合中有follower副本“追上”了leader副本,那么leader副本会把它从OSR集合转移至ISR集合。

默认情况下,当leader副本发生故障时,只有在ISR集合中的副本才有资格被选举为新的leader,而在OSR集合中的副本则没有任何机会(不过这个原则也可以通过修改相应的参数配置来改变)。

HW & LEO

HWLEO 和上面提到的 ISR有着紧密的关系。

HW (High Watermark)俗称高水位,它标识了一个特定的消息偏移量(offset),消费者只能拉取到这个offset之前的消息。

下图表示一个日志文件,这个日志文件中只有9条消息,第一条消息的offset(LogStartOffset)为0,最后一条消息的offset为8,offset为9的消息使用虚线表示的,代表下一条待写入的消息。日志文件的 HW 为6,表示消费者只能拉取offset在 0 到 5 之间的消息,offset为6的消息对消费者而言是不可见的。

LEO (Log End Offset),标识当前日志文件中下一条待写入的消息的offset。上图中offset为9的位置即为当前日志文件的 LEO,LEO 的大小相当于当前日志分区中最后一条消息的offset值加1.

分区 ISR 集合中的每个副本都会维护自身的 LEO ,而 ISR 集合中最小的 LEO 即为分区的 HW,对消费者而言只能消费 HW 之前的消息。

LW是Low Watermark的缩写,俗称“低水位”,代表AR集合中最小的logStartOffset值。副本的拉取请求(FetchRequest,它有可能触发新建日志分段而旧的被清理,进而导致logStartOffset的增加)和删除消息请求(DeleteRecordRequest)都有可能促使LW的增长。

下面具体分析一下 ISR 集合和 HW、LEO的关系。

假设某分区的 ISR 集合中有 3 个副本,即一个 leader 副本和 2 个 follower 副本,此时分区的 LEO 和 HW 都分别为 3 。消息3和消息4从生产者出发之后先被存入leader副本。

在消息被写入leader副本之后,follower副本会发送拉取请求来拉取消息3和消息4进行消息同步。

在同步过程中不同的副本同步的效率不尽相同,在某一时刻follower1完全跟上了leader副本而follower2只同步了消息3,如此leader副本的LEO为5,follower1的LEO为5,follower2的LEO 为4,那么当前分区的HW取最小值4,此时消费者可以消费到offset0至3之间的消息。

当所有副本都成功写入消息3和消息4之后,整个分区的HW和LEO都变为5,因此消费者可以消费到offset为4的消息了。

由此可见kafka的复制机制既不是完全的同步复制,也不是单纯的异步复制。

事实上,同步复制要求所有能工作的follower副本都复制完,这条消息才会被确认已成功提交,这种复制方式极大的影响了性能。而在异步复制的方式下,follower副本异步的从leader副本中复制数据,数据只要被leader副本写入就会被认为已经成功提交。在这种情况下,如果follower副本都还没有复制完而落后于leader副本,然后leader副本宕机,则会造成数据丢失。kafka使用这种ISR的方式有效的权衡了数据可靠性和性能之间的关系。